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Abstract. Deep reinforcement learning (DRL) has experienced tremen-
dous growth in the past few years. However, training stability of agents
continues to be an open research question. Here, the authors present
Ensembled Directed Mutation of Deep Reinforcement Learning (EDM-
DRL) - a hybridization of evolutionary computing (EC), ensemble learn-
ing, and DRL methods as a means of mitigating training instability in
DRL agents. We show that our method trains more consistently than
synchronous Advantage Actor Critic (A2C). We also show that by em-
ploying our novel mutation and ensemble methods, performance of DRL
agents can be improved during test time without sacrificing training
stability. Further, though a similar number of time steps are used, we
show that the EDM-DRL algorithm uses a mere 1% or less of the net-
work parameter updates used in A2C. Finally, we conduct an ablation
study to identify components within the EDM-DRL algorithm respon-
sible for highest contribution. Code and experimental logs are available
at: https://github.com/Linked-Liszt/EDM-DRL

Keywords: Deep Reinforcement Learning · Evolutionary Algorithms ·
Ensembles · Game Playing

1 Introduction

Deep reinforcement learning (DRL) has shown significant improvement over the
last several years, proving its ability to competently navigate complex, high
dimensional problem spaces [1]. Despite the progress, the training stability of
RL agents still presents unique challenges for the field. Without the ability to
train RL agents in a stable manner, the technology can only be realized in
silico as it is too unsafe or unreliable to be applied in practical domains. For-
tunately, several methods such as double Q-learning [26], prioritized experience
replay [19], dueling networks [27], distributional RL [2], asynchronous advantage
actor-critic (A3C) [15], multi-step bootstrapping [23] [24], and Rainbow [11],
which combines several of the previous, have been developed to address the is-
sue of training instability. Though these methods have demonstrated state of
the art, reproducible results, DRL training stability remains highly sensitive to
choices of hyper-parameters, random seeds, and reward function design.

https://github.com/Linked-Liszt/EDM-DRL
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Drawing inspiration from human intelligence, the only existence proof for
general intelligence, the authors hypothesize that the combination of evolution
and learning may improve the state of DRL stability. Within the field of evolu-
tionary computing (EC), several hybrid methods have been developed in order
to combine the unique benefits of evolution and learning. Further, since RL
problems typically require both exploration of a space and optimization of the
expected reward within that space, they can certainly benefit from exploration
methods which are not gradient-based, as in evolutionary algorithms (EAs). In
addition, the population-based approach of EAs may offer stability to RL al-
gorithms since, with an ensemble, various members may be able to cover each
others’ weaknesses at inference time. Therefore, this work explores the following
research question:

How does the hybridization of EAs and DRL affect the training stability of
DRL agents?

With this abstract research question in mind, the authors engage the follow-
ing sub-topics in particular:

– Methods of integrating EAs and DRL which include both mutation and
learning

– Comparison of ensemble methods for action selection in EDM-DRL
– Analysis of the stability of EDM-DRL as compared to its ablated components
– Analysis of stability of EDM-DRL as compared to an A2C baseline.

2 Background

RL is an area of machine learning which places agents inside of environments.
These agents learn to maximize a reward signal by interacting with the environ-
ment. This work focuses on a subset of RL, referred to as DRL, which integrates
deep learning and neural networks into the RL paradigm. RL and DRL have
both shown much promise when applied to challenging problems in manufac-
turing [14] and finance [5]. DRL, in particular, has recently shown outstanding
success, capable of exceeding human-level performance in the game of Go [22].

There have been significant efforts and contributions to improving the sta-
bility of RL agents during training in recent decades. Perhaps the earliest ex-
ample comes from Sutton et al. in their introductory works to RL in 1988 and
1998 [23] [24]. These works introduced critical concepts to the field of RL like
temporal difference (TD) learning and multi-step bootstrapping for reward tar-
gets. Both have been shown to provide stability to agents under certain learning
and policy conditions. The interested reader may find the more recent work by
Sutton et al. an informative review on stability conditions for various forms of
TD [25].

Another notable improvement, inspired by concepts in neuroscience, was the
development of an experience replay mechanism in 2013 by Mnih et al. [16].
Prior to this work, DRL was unable to learn control policies directly from high
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dimensional sensory input such as the raw RGB pixels of an image. The addition
of an experience replay buffer allows agents to uniform randomly sample and
learn from experiences within a predefined history size, smoothing the reward
distributions over previous behaviors.

An improvement to this work was introduced in 2015 by Schaul et al. in
which the sampling of previous experiences is prioritized proportional to the TD
error δ, which roughly denotes how “surprising” an action is to the agent [19].
The probability of sampling a transition is defined in Eq. 1, where pi > 0 is the
priority of the transition given by |δi|, k is the transition history size, and the
exponent α controls the intensity of prioritization (with α = 0 corresponding to
uniform random sampling).

P (i) =
pαi∑
k p

α
k

(1)

Both the introduction of experience replay and prioritized experience replay
have been shown to contribute significantly to the stability of RL agents during
training, especially those learning from noisy reward signals. A further contribu-
tion made in 2015 by Mnih et al. was the introduction of a dual architecture (not
to be confused with double Q-learning or dueling networks) where the “target”
weights of a network are only periodically updated from the “online” weights,
effectively avoiding overfitting to an unstable reward target [17].

Drawing inspiration from a single network with multiple streams, Wang et al.
introduced the dueling network architecture in 2015 [27]. In the dueling architec-
ture, the two streams which are aggregated together are the value stream and the
advantage stream, with the prior estimating the quality (Q) of a particular state
and the latter estimating the advantage gain of a particular state-dependent ac-
tion. This combination of differing goals was shown to moderately improve the
stability during optimization of the network.

Further improvements were introduced with the innovation of double Q-
learning, first proposed in 2010 and generalized for DRL models in 2016 by van
Hasselt et al. [9,26]. Double Q-learning addresses the issue of overly optimistic
value estimation in Q-learning models by decoupling the evaluation and selec-
tion of actions. Two Q functions QA and QB are used to evaluate the quality of
state-action pairs. However, instead of updating QA with Eq. 2 as in traditional
Q-learning, and without loss of generality, double Q-learning uses QB(s′, a∗)
where QB is updated on a different sample of experiences than QA.

QA(s′, a∗) = max
a

QA(s′, a) (2)

Another significant addition to the stability of RL agents during training
was the work by Mnih et al. in 2016 on A3C [15]. A3C is in some ways similar
to other multiple stream approaches. The actor is a policy based mechanism
and the critic is a value based mechanism. However, the value estimations from
the critic are not aggregated with other estimations in any way (as in dueling
networks) nor used to update the actor’s policy (as in double Q-learning). Instead
the policy is updated directly through a policy gradient which aims to maximize
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the value estimations of the critic, which is itself independently learned. This
has been shown to stabilize training of agents without the need for experience
replay, allowing for on policy learning methods. In 2017, Wu et al. [28] discovered
that a synchronous version of A3C, dubbed A2C, provided even more stable and
efficient policy updates by waiting for all actors to finish episode roll-outs before
performing the policy update. For this reason, A2C was selected as the DRL
stability baseline.

More improvements to the performance of RL agents came from Bellemare et
al. in their work on distributional RL in 2017 [2]. Distributional RL attempts to
model expectation of reward as a discrete parameterized probability distribution.
The work gives strong evidence of improvements to stability during training, es-
pecially in the case where reward signals do not follow stationary distributions.
Another work in 2017 that is of note is the work by Fortunato et al. which intro-
duced noisy networks [6]. While the work does not necessarily directly improve
the stability of RL agents, it encourages exploration in tasks which require long
chains of actions prior to the first reward signal without destabilizing the agent
by adding intrinsic motivation signals.

In 2018, an intriguing paper by Hessel et al. was published in which several
research scientists from DeepMind conducted an ablation study of several of the
previously described contributions to RL [11]. Termed Rainbow, the combined
algorithm was shown to be stable, generalizable, and sample efficient. Further,
the work offers highly valuable insight into the individual contributions of each
method to specific tasks within the Atari suite of games. An elegantly simple
idea, the work strengthens the adage that the whole is greater than the sum of
its parts.

Within the realm of EC, Covariance Matrix Adaptation Evolutionary Strate-
gies (CMA-ES) has demonstrated state of the art results when optimizing func-
tions with several local extrema and high multi-modality (e.g., shifted rast-
rigin) [8]. CMA-ES uses information derived from the population to dynami-
cally adapt the distribution function used in mutation. By controlling both the
step size and the “direction” of mutation, CMA-ES can more efficiently ex-
plore the problem space. Further, since CMA-ES is a population-based method
with stochastic mutation, it may more easily escape deceptive gradients or sub-
optimal local extrema. This ability to navigate deceptive function landscapes
may lend itself well to exploring highly noisy or deceptive reward landscapes in
modern DRL problems.

Though the mentioned RL works all contribute significantly to the stabil-
ity of RL agents, all are contributing ideas taken from mathematics, statistics,
neuroscience, or deep learning. In comparison, relatively little research has been
conducted on employing ideas from population dynamics, evolution, or EC to
stabilize DRL training. Additionally little investigation has been done into en-
sembling populations in an RL setting. Some hybrid methods combining elements
of EC and DRL exist [12], [18], [13]. However, such hybrids often merely imple-
ment existing techniques like conventional neuroevolution or Lamarckian and
Baldwinian learning. Further, all the discussed related work focuses on the per-



EDM-DRL 5

formance of the agent rather than having training stability as the goal. This work
addresses this deficit by employing a novel combination of some of the addressed
techniques with evolutionary methods and analyzing the training stability of the
agents as compared against the ablated components.

3 Training Procedure

Here we propose a close integration between EC and deep learning paradigms.
Our method exploits beneficial techniques common to the deep learning world,
namely a shared feature extractor, as well as novel exploration techniques drawn
from EC. We also exploit population-based methods by ensembling all actors at
inference time during testing. This learning method is detailed in Algorithm 1
with the next sections detailing its individual components and methods.

Algorithm 1 Learning Procedure

1: Actors = InitializeActors()
2: Critic = InitializeCritic()
3: FeatureExtractor = InitializeFE()
4: IsUnsolved = True
5: T imesteps = 0
6: while T imesteps < MaxTimesteps and IsUnsolved do
7: Experiences = []
8: Fitnesses = []
9: for i, Actor ∈ Enumerate(Actors) do

10: Experiences[i], F itnesses[i], NumSteps = Environment(Actor)
11: T imesteps = T imesteps+NumSteps
12: end for
13: GradsFE, GradsActors, GradsCritic = Backpropagation(Experiences)
14: FeatureExtractor = FeactureExtractor −GradsFE
15: Critic = Critic−GradsCritic
16: Actors = Evolve(Actors, GradsActors, F itnesses)
17: IsUnsolved = TestEnsemble(Actors, FeatureExtractor)
18: end while

3.1 Controller Structure

Our novel, hybrid controller structure is a fully connected neural network com-
posed of the previously mentioned feature extractor, a critic network, and a
population of actor networks. In contrast to other EC and RL hybrid methods,
the critic network is not separate from the actor network. The model takes in a
state vector representing the environment at a given time which is passed to the
feature extractor for learning abstract representations. The feature extractor is
a set of shared layers within the critic neural network and all actor networks
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within the population. As such, we explicitly show the separation of the critic,
the feature extractor, actors, and their respective gradients in Algorithm 1. The
representations learned by these layers are then passed to the population of
value based actor networks, which estimate the expected reward for a given
state-action pair, and the policy based critic network, which assesses the quality
of the state. Finally, data from all actors, even agents which do not survive to the
next generation, and data from the critic network are back-propagated through
the respective networks and the shared feature extractor.

In the backward pass of the model, each actor of the generation is given
a single episode to sample the environment. All the experiences are batched
into a singular network update, similar to A2C. During the update, the advan-
tage stream, or the difference between the observed value and the critic value,
is back-propagated through the value network. Then, using the TD error, the
critic network is updated to better predict future transitions. The accumulated
gradients are then back-propagated through the feature extractor. Entropy reg-
ularization [15] is applied to encourage convergence over time.

3.2 Ensembling

Since the EDM-DRL algorithm makes use of a population of actors, it’s possible
to ensemble them together during test time. This ensemble is applied on line 14
of Algorithm 1. We try several ensembling methods which are influenced by the
fitness of the actors. Here we define fitness as the sum of the rewards in a given
episode. The first and simplest method is to allow the 1-elite actor - the member
that performed best during its training episode - to select all actions during
evaluation. Intuitively, this makes the assumption that reward is a near perfect
representation of true performance. Alternatively, we consider modeling fitness
as a probability mass function across the population by applying a softmax. The
resulting action is chosen proportional to the fitness probability masses. This is
a weaker assumption than the previous method, but the fittest individuals still
generally choose the actions. Finally, the third method we consider is a weighted
voting mechanism. Actors are assigned a number of votes proportional to their
fitness. In this case, lower fitness individuals are able to overwhelm the decisions
of more fit members if they are in agreement. A visualization of the weighted
vote mechanism can be seen in Fig. 1.

3.3 Initialization and Termination

The parameters of every network layer, including the feature extractor, actors,
and the critic, are initialized using Xavier initialization [7]. This is defined as
U(−
√
x,
√
x) where x is the number of input parameters. This type of initializa-

tion attempts to preserve the scale of the input and output activation between
each layer. Each actor is initialized independently in order to encourage diversity
in the population.

The algorithm is terminated on one of two conditions: solving the environ-
ment or 100k time steps, whichever is first. In the environment implementations
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Fig. 1. The “weighted vote” mechanism. In a discrete environment, each actor selects
an action. Their finesseses are accumulated. The action with the most votes is taken.

used in this work, the OpenAI gyms [4], each environment has different condi-
tions to determine when it is “solved.” In order to ensure robustness, a typical
definition of “solved” is achieving a given mean reward µ across k episodes. If
100k time steps pass, the algorithm is terminated and the run is marked as un-
solved. This is intentionally a significantly longer evaluation time than is needed
to solve the environment as we wish to analyze failure and abnormal cases.

4 Evolution Procedure

The evolution procedure, stated in line 16 of Algorithm 1, creates the next
generation of actor networks. With access to the gradients produced by back-
propagation, we present a hybrid mutation method and a novel method, coined
“repopulation”, which replaces traditional parent and survivor selection. The
base EDM-DRL method employs mutation as its sole variation operator. In a
separate ablation, we experiment with adding a recombination method. In gen-
eral, all the described methods try to combine and capitalize on the benefits of
EC and gradient decent. They tend to be more greedy than typical EC meth-
ods through the use of gradients, but less greedy than typical DRL approaches
through the use of stochastic methods and population dynamics.

Algorithm 2 Evolution Procedure

1: Population.sort(Fitnesses)
2: NewPopulation = []
3: NewPopulation.append(Population[0])
4: for ParentIdx, ChildCount ∈ Enumerate(Repopulation[]) do
5: for i ∈ Range(ChildCount) do
6: Child = DirectedMutation(Population[ParentIdx], Grads[ParentIdx])
7: NewPopulation.append(Child)
8: end for
9: end for
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4.1 Repopulation

We introduce a novel method, called repopulation, to create the next generation,
replacing the canonical parent selection and survival selection methods. Capi-
talizing on the accuracy of the gradient step, we chose to systemically mutate
the best performing population members. In each generation, parents produce
a pre-defined number of offspring. For example, with repopulation parameters
of [p1, p2, . . . , pm] with the sum of p1 through pm equal to µ, the fittest par-
ent produces p1 offspring, the next produces p2, and so on. This method, as
opposed to a more traditional mating and survival selection, will cause a more
greedy selection of parents which reproduce when weighted heavily on the first
few members. We also add the option to guarantee 1-elite, which is beneficial
in the case that a generation Gt+1 performs worse than generation Gt, as the
1-elite is neither mutated nor updated via the gradients. However, the 1-elite
individual is re-evaluated with every new generation of offspring. This system
creates a generational (µ, λ) population management model where the popula-
tion size will remain static since µ = λ. The choice of how many offspring each
rank of parent is allowed to produce was hand-tuned in order to heavily bias
offspring toward the most elite parents.

4.2 Mutation

Since we have access to the gradients produced by back-propagation, the muta-
tion operator can be augmented with this information. We will call this “directed
mutation.” In contrast to random mutation, directed mutation is intentionally
skewed to follow the previous gradient step. For each parameter in the mutated
layers, a random learning rate is chosen from a defined interval, and Gaussian
noise is applied to the gradient step. In addition, the size of the mutation is scaled
to the size of the gradient step. In order to encourage convergence, this learning
rate is multiplied by a decay rate at the end of every generation. Drawing in-
spiration from CMA-ES, this approach leverages the strengths of both gradients
and population based methods, albeit differently. Instead of using the covariance
of a population, the mutation distribution is informed by the analytical gradient.
Further, rather than disallowing large gradient steps, as in trust region policy
optimization and proximal policy optimization methods, we accomplish similar
stability during exploration by relying on the diversity of exploration within a
population [20,21]. In other words, individuals may explore unsafe regions of
the reward space to their detriment, yet other members of the population may
remain intact. A pseudo-code implementation of directed mutation is included
in Algorithm 3. For a full visual representation, see Fig. 2.

4.3 Recombination Ablation

We also experiment with two forms of parameter-space recombination in a sep-
arate ablation, with some modification of the repopulation system. For both
types of recombination, two parents are selected, and used to create a single
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Algorithm 3 Directed Mutation

1: lr = U(lr low, lr high)
2: for param, grad ∈ {Parameters, Gradients} do
3: µ = param− grad
4: σ = mutation scale · |param− µ|
5: param = x ∼ N (µ, σ)
6: end for

Fig. 2. Left: conventional mutation - parameters are moved randomly following a gra-
dient step; Middle: hybrid “directed” mutation - the mutation is skewed to follow the
learning step; Right: hybrid “scaled” mutation - same as the directed method but scaled
to a percentage of the gradient step’s magnitude.

child. The first method averages parameters from the two parent networks. The
second form of recombination randomly selects individual parameters from the
parents to build a full parameter set. In both cases, the parents’ gradients are
applied before the parameters are crossed over.

In the recombination experiments, a child actor is created through either re-
combination or mutation. Like the repopulation method, we greedily select the
best performing members for use in recombination. In the configuration [α mu-
tation, β (γ) recombination], the first α members are created by mutation from
the best fitness member. The next β members are created through combinations
of the top γ population members, denoted in parenthesis. Finally, similar to the
base repopulation method, the elite member is held for the next generation.

5 Experimental Setup

This work conducts three experiments. The first experiment compares the EDM-
DRL algorithm against an established baseline, the second analyzes the benefits
of ensembling during test time, and the final offers an ablation study of com-
mon combinations of mutation and recombination. All experiments share the
following general setup.



10 M. Prince et al.

Fig. 3. On the left, EDM-DRL compared to the baseline A2C. On the right, a com-
parison of ensemble methods against the 1-elite method.

5.1 Training Environment

We use the “Cartpole-V1” environment, a well known and maturely tested en-
vironment from OpenAI gyms [4]. OpenAI gyms provide a common API and
stable environments to help promote rapid development and fair comparison for
RL algorithms. The goal of the cartpole environment is to balance a hinged pole
affixed to a cart which may undergo 2D changes in motion. The agent is allowed
to push the cart one unit left or right in a given time step. The agent receives
a reward of positive one for each time step that the pole remains “balanced”
and the cart remains within the frame. Here, “balanced” is defined as remaining
within fifteen degrees of vertical center. The environment is initialized randomly
with a slight tilt on the pole and offset on the cart. Version 1 of cartpole is
the more challenging version as the agent must keep the pole upright and the
cart on screen for 500 time steps. As mentioned previously, the definition of
“solved” for this particular environment is to achieve a mean score of 475 across
100 episodes. Though this environment is certainly a toy problem, easily solved
by linear, random search algorithms, it stands as a fair comparison for various
agents and controllers as evidenced by its use throughout the field[1][10].

5.2 Measuring Performance and Stability

For each run, we attempt to sample the environment every 2000 time steps during
training. Here a sample is defined as the mean performance of a particular agent
over 100 episodes. In the A2C baseline, we are able to directly sample scores
every 2000 time steps. However, due to the requirement of completing an episode
prior to fitness evaluation, we are only able to sample individuals’ performances
following each generation. To directly and fairly compare the progress of each run
at a set point, we use linear interpolation between surrounding sample points.

For each configuration, 30 unseeded runs are conducted. This gives us enough
samples to compare the variation in the learning curves of each class of agent.
During each run, we track the following metrics: number of runs solved in under
100k time steps, time steps until solved µ, time steps until solved σ, generations
until solved µ, generations until solved σ, and the cross-run reward σ. Since
this work focuses primarily on training stability, the cross-run reward standard
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Fig. 4. Ablation of mutation and recombination methods. For readability, each ablation
is shown against a base algorithm with no mutation or recombination.

deviation is of particular interest. Visually, the mean performance corresponds
to the plotted line and the standard deviation corresponds to the shaded regions
in Fig. 3 and Fig. 4. In addition to this variation, we also consider the standard
deviation in time steps used to solve the environment as related to the agent’s
stability.

Since each of the configurations contain 30 runs, they can be statistically
compared. In order to gauge performance, we compare time steps used to solve
the environment for each run. Then we conduct an F-test to determine if the
variance of each of the sets may be assumed to be equal. The logs were manually
examined and were determined to follow a normal distribution. Following this,
we perform a two-tailed T-test assuming the appropriate relation of variances,
equal or unequal. We use a confidence level of 0.95 to determine if the differences
in means are significant.

Strategy parameters are tuned using a combination of random search and
hand-tuning. The parameters used in the following experiments are listed in
Table 1. For each configuration, all strategy parameters remain static except
for the one being ablated. For the A2C baseline, we used the hyper-parameters
suggested in their respective works.

5.3 Experiments

Our algorithm draws inspiration from A2C, so it is a logical choice for bench-
marking. The baseline is compared against the best found configuration of the
EDM-DRL algorithm.

Then, we examine the benefits gained from allowing an ensemble approach
for action selection during evaluation. We compared the softmax and weighted
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Table 1. EDM-DRL Strategy Parameters

Parameter Value

Base Parameters

Population Size 10
Repopulation [5,3,1] (+1 elite)
Evolutionary Learning Rate 5e-5
Evolutionary Learning Rate Decay 0.98 (per generation)
Optimizer ADAM
Optimizer Learning Rate 3e-2
Value Coefficient 0.5
Entropy Coefficient 0.05
Shared Layers 1 (size=128)
Actor Layers 2 (size=128)
Value Layers 1 (size=128)
Activations ReLU

Mutation Ablation Parameters

Learning Rate (high bound, low bound) [4e-5, 9e-5]
Mutation Scale 0.1

Recombination Ablation Parameters

Repopulation [5 mutation , 4 (3) recomb] (+1 elite)

vote ensemble methods against a more traditional 1-elite approach. All employ
their respective best found configuration.

Finally, we conduct an ablation study concerning two critical sections of the
mutation and recombination algorithms. The added elements include: random
selection of learning rates, application of Gaussian noise to gradient steps, mean
recombination, and masking recombination. Each element is added in isolation.

6 Results & Discussion

Here we highlight the results from each of the discussed experiments. The source
code and raw data for all experiments is included as supplementary material.5

For each of the experiments we cover statistical results and graph relevant com-
parisons. Table 2 compares data from all of the experiments.

6.1 Comparison to A2C

As shown through statistical analysis, the A2C baseline was able to achieve solu-
tions faster than the best configuration of our algorithm (p = 0.0015). However,
the EDM-DRL algorithm is far more stable in training in general, as shown by
the tighter variance, represented by the shaded areas in Fig. 3.

5 https://github.com/Linked-Liszt/EDM-DRL
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Table 2. The observed results of the experiments

Algorithm Runs Training σ Gen.s µ Gen.s σ Frames µ Frames σ

baseline A2C 30/30 119.7 N/A N/A 24,560 10,402

weighted vote 30/30 52.7 62 11.23 32,287 6,627

1elite 30/30 40.4 67 7.9 44,962 10,135

softmax 29/30 60.5 73 15 44,700 13,115

Ablations

mutation lr param 30/30 66.5 62 12.5 37,560 15,384

mutation lr no param 30/30 57.1 65.7 14.9 33,376 6,831

mutation no lr param 30/30 57.3 62 15.6 31,694 6,066

mutation none 30/30 62.9 60 10.1 33,635 9,594

mean mating 30/30 76.6 67.9 11.0 34,093 7,134

mask mating 30/30 61.6 67.93 13.6 36,525 15,067

Best results in each category are bolded

6.2 Ensemble Comparison

We are able to show that ensembling is an effective strategy for action selection.
The weighted voting mechanism in particular outperforms the non-ensembling
1-elite strategy by a statistically significant margin (p = 5.3e−7) in frames used
to solve the environment. This can be clearly seen in the steeper slope and
greater final value of the time steps until solved µ metric, which is visualized in
Fig. 3. However, the softmax ensemble method proved to be neither significantly
better nor worse than the 1-elite strategy. Though these results are surprising, we
speculate that the success of the weighted vote mechanism is due to the natural
tendencies of a population to regress to the mean. While weaker individuals
alone are less fit than a single strong individual, the combined strength of the
population is able to compensate when they are in agreement.

6.3 Ablation Study

Our ablation study shows that mutation and recombination, in the current forms
proposed in this work, had little positive effect on the overall performance or
stability. Statistically, none of the ablated agents were better or worse than
the base agent by a noteworthy margin. In particular, the mean recombination
strategy is remarkably similar to the unmodified base agent. So, it stands to
reason that this approach would be the least beneficial to training stability. We
suspect that mutation and recombination actually injected further noise into the
learning environment while not significantly destabilizing the agent. A pair-wise
comparison of each ablation against an unmodified base agent is laid out in
Fig. 4.
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7 Conclusion

The authors have shown that using evolutionary methods may be used to create
more stable DRL agents. While the ablated mutation and recombination ele-
ments of the EDM-DRL algorithm yield subpar performance, the population-
based approach and repopulation mechanism detailed in this work seem to
greatly benefit the stability of the EDM-DRL agent. In particular, this improve-
ment is evidenced by the tighter standard deviation of rewards received across
30 unique runs as compared with the A2C baseline.

We observe that our algorithm is able to solve the CartPole environment
using one parameter update for every 100 (up to 500 in some cases) parameter
updates used in the A2C baseline. In A2C, the algorithm updates the network
parameters at every time step. In contrast, EDM-DRL updates parameters only
once per generation. We further demonstrate the benefits of having an ensem-
ble of co-trained population members. The weighted voting mechanism is able
to consistently perform statistically better than the 1-elite member of the pop-
ulation. In conventional DRL, ensembling methods are typically not practical
due to the sampling inefficiency of each individual. This method mitigates such
inefficiencies.

The stability of DRL agents during training remains a challenging research
area for the AI community. Combined efforts over years of work have produced
impressive engineering solutions which have incrementally yet profoundly im-
proved this issue. Though in its early stages, the EDM-DRL algorithm stands
to further improve upon the stability of DRL agents by hybridizing previous
contributions with ideas drawn from EC.

8 Future Work

While we have interesting early results, this by no means is a comprehensive
examination of the benefits that EC may offer DRL agents in terms of training
stability. For example, further research may make use of more complex neural
network components or architectures. The current implementation is built en-
tirely from fully connected layers. In complex environments, particularly those
which rely on raw RGB pixel input, convolutional layers would likely serve as
more effective feature extractors. Memory-based units like recurrent neural net-
works and long-short term memory layers may also be candidates for hybridizing
EC and DRL for time-series problems.

Some of the next logical steps for this work would be to explore the more
complex gym environments such as the Arcade Learning Environment [3]. Fur-
ther, we have observed that the discussed EDM-DRL algorithm uses significantly
fewer parameter updates (by orders of magnitude) than the A2C baseline. In-
teresting future work may investigate whether the population based approach
enables the EDM-DRL algorithm to take modified gradient steps which act as
shortcuts along a purely gradient-based optimization path way.

To this end, an interesting area of research that is highly relevant to DRL
is the investigation of unique exploration methods. Since DRL relies heavily
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on exploring the environment to gather data concerning the reward landscape,
novelty search is a well suited contribution from EC which may benefit DRL
agents. Particularly, the authors suggest that research into the effects novelty
search may have on training stability, as opposed to performance, is worth future
investigation.
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