
A Multi-Objective Evolutionary Algorithm
Approach for Optimizing Part Quality Aware

Assembly Job Shop Scheduling Problems

Michael H. Prince1,2, Kristian DeHaan1,3, and Daniel R. Tauritz1,4

1 BONSAI Lab, Auburn University, Auburn AL 36830, USA
2 mhp0009@auburn.edu
3 kzd0054@auburn.edu
4 dtauritz@acm.org

Abstract. Motivated by a real-world application, we consider an As-
sembly Job Shop Scheduling Problem (AJSSP), with three objectives:
product quality, product quantity, and first product lead time. Using
real-world inspection data, we demonstrate the ability to model product
quality transformations during assembly jobs via genetic programming
by considering the quality attributes of subparts. We investigate inte-
grating quality transformation models into an AJSSP. Through the use
of the de facto standard multi-objective evolutionary algorithm, NSGA-
II, and a novel genotype to handle the constraints, we describe an evo-
lutionary approach to optimizing all stated objectives. This approach is
empirically shown to outperform random search and hill climbing in both
performance and usability metrics expected to be valuable to adminis-
trators involved in plant scheduling and operations.

Keywords: Assembly job shop scheduling· Evolutionary algorithm· Ge-
netic programming· Manufacturing· Multi-objective evolutionary algo-
rithm

1 Introduction

The real-world scenario motivating this research involves scheduling the produc-
tion of complex, low-quantity, mechanical and electrical components with exceed-
ingly strict quality requirements. These products are constructed at a trusted
foundry and often involve time-intensive additive manufacturing techniques. As
a consequence, when a product fails to meet said requirements, it often must
be rebuilt. This incurs a relatively significant delay due to the low quantity of
products produced. Often times, an initial sample of the product must be sent
off for early inspection and minor design modifications. This scenario motivates
the three primary objectives for this optimization problem:

– Increasing quality of parts produced.
– Reducing time required to produce a defined quantity of parts (makespan).
– Reducing the lead-time of the first produced part.

2 M. Prince et al.

The first contribution of this work is the modeling of quality, and integra-
tion of quality based constraints in the Assembly Job Shop Scheduling Problem
(AJSSP). In assembly jobs, we propose that the quality attributes of the pro-
duced part can be determined by a non-linear combination of the quality of its
subparts. With real-world intermediate inspection data, we demonstrate that
accurate quality models may be constructed. We describe the techniques used to
produce the quality models, the systems required to integrate this new constraint
into the AJSSP, and how this constraint may be utilized to produce optimization
objectives relevant to our real-world scenario.

The second contribution of this work is the formulation of a multi-objective
evolutionary algorithm (MOEA) approach to optimize the AJSSP under the new
constraints and objectives, particularly in the genotype design and operation.
The genotype utilizes koza-style genetic programming (GP) trees to select sub-
parts for assembly and a directly evolved schedule to control the order in which
parts are assembled. This algorithm is compared against baselines to empirically
gage performance. Finally, other attributes of the produced solutions, such as
fitness range and distribution, are compared.

2 Background

The AJSSP is a variant of the JSSP with an added job dependency constraint.
In the traditional JSSP, a series of jobs must be assigned to a limited number
of machines with the typical goal of reducing makespan. The AJSSP adds an
extra constraint on top of the traditional JSSP: parts produced from the jobs
must be assembled to create the final product. This constraint restricts the
number of valid schedules, since assembly is impossible if the sub-parts have
not been manufactured. An example of this is shown in Figure 1. However, like
the JSSP, the AJSSP is still considered an NP-hard problem [15]. We find that
the AJSSP closely matches our real-world scenario’s constraints. Additionally,
the AJSSP’s consideration of intermediate products and inventory provides a
natural integration point for the quality modeling.

2.1 JSSP and AJSSP Literature

The JSSP is a widely studied and relevant problem to the manufacturing indus-
try and operations research. Within the field of evolutionary algorithms (EAs),
as indicated by the following surveys, the JSSP has been extended many times to
consider multiple objectives [10]. Similarly, many different constraints have been
considered such as resource limitations and uncertain processing time [9]. While
some works, such as Al-Hinai et al. [2] and Wang et al. [18], consider machine
disruptions impacting scheduling, failed products due to quality thresholds is an
area that has seen little coverage.

Presently, research into the AJSSP is significantly less common than re-
search into the JSSP. However, some approaches have been attempted. Lu et

MOEA Approach for Quality Aware AJSSP 3

Fig. 1. A visualization of the AJSSP. In this part dependency graph, at a minimum,
seven assembly steps must be taken to produce a single output product. Six of those
manufacture unique parts, but P4 must be assembled twice for parts P1 and P2. In the
invalid schedule, P4 is only assembled once and therefore P2 and P0 can’t be produced.

al. explores the use of combining order review and release mechanisms with dis-
patching rules [12]. Thiagarajan et al. also considers the use of dispatch rules
along with balancing multiple objectives via a weighted sum [17]. In the evo-
lutionary space, Wong et al. compares genetic algorithm and particle swarm
approaches using a chromosome to directly encode job sequencing [20]. Previ-
ous work from this group [3,19], considers different genetic algorithm techniques
to solve the AJSSP and a resource constrained AJSSP respectively. Lv et al.
combines the previously mentioned dispatch rules with Koza-style genetic pro-
gramming (GP) [13]. Pareto-front multi-objective optimization appears to be
particularly sparse in this space. In a recent work, Zhang et al. use ant colony
optimization to simultaneously optimize makespan, tardiness, and workload [22].

2.2 Evolutionary Methods

Our problem necessitates two separate optimization methods: one to create the
transformation models and one to optimize the scheduling and dynamic part se-
lection. For creating part transformation models, GP was selected. GP has had
success modeling non-linear scientific processes [4]. By evolving Koza-style trees,
GP can create accurate and human-interpretable mathematical models. Tradi-
tional mathematical techniques struggle with non-linear and multivariate mod-
eling since it is difficult to design model structure beforehand. Neural network
techniques, while accurate, are exceedingly difficult to interpret once models
have been trained [21]. For these reasons, GP carries the characteristics valued

4 M. Prince et al.

by small-scale, high-consequence manufacturing, where not only accuracy, but
interpretability, is desired.

The scheduling and part selection problem being considered motivates the
use of a MOEA. Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [6]
is one of the de facto MOEAs. It has seen much success in the manufacturing
industry [1,8]. When given a multi-objective optimization, the optimal solution
can be represented as a set of points describing the tradeoff between objectives.
This set is called the Pareto-optimal solution. EAs, due to their population
based approach, are uniquely suited to exploring and discovering points along
the Pareto-optimal solution. NSGA-II sets itself apart from other evolutionary
methods through the use of non-dominated sorting combined with a clustering
analysis during survival selection. In applications like the ones presented in this
work, it may be beneficial for the end users to see the full range of options and
tradeoffs when more than one objective is present.

3 Modeling of Quality Transformations

At small-scale, high-consequence production facilities, due to the quality require-
ments, subparts entering assembly and machining processes are often inspected
before assembly begins. While the current inspection process weeds out defective
parts at a single stage, we were curious if this system could be used to predict
quality at a granular level, potentially identifying and preventing compounding
errors as higher level assemblies are manufactured.

In order to construct a proof of concept, we obtained 70 instances of real-
world product data, including the inspected attributes of all subparts and final
assemblies. Initial analysis of the data showed that non-linear transformations
were required in order to capture the relationships between the part and assembly
attributes. The following sections detail the processes required to produce these
models.

3.1 Data Sanitization

In some examples, input part data were missing. Data holes like these are com-
mon in real-world data. Normal data cleaning methods such as replacing gaps
with the mean of existing data [16] were not used due to the small number of
examples available. Instead, data gaps in input data were replaced with zeros.
This allows the model’s section pressure to favor features that are available in
all examples, while retaining the ability to leverage the incomplete data.

3.2 Evolving Models

Due to the non-linearity of the data, and a desire to produce models with high
readability, GP was selected to model the transformations. Koza style tree-based
GP [14] is employed, with the tree output representing a single expected quality
attribute. A standard set of binary functions and terminals, detailed in Table 1,

MOEA Approach for Quality Aware AJSSP 5

were used to evolve the models. Quality attributes are injected into the model
via the attribute terminal.

Table 1. GP Primitives

Primitive Type Primitives

Binary Functions +, -, *, /

Terminals Constant, Quality Attribute

The fitness of each genotype is calculated by comparing the model’s outputs
with the expected data on several real-world parts. A granular and fair accuracy
calculation must be constructed to handle variations in part attribute values.
Our accuracy calculation scales the accuracy relative to the attribute size. This
equation is described in Eq. 1 with α representing the expected value and β rep-
resenting the model’s value. When determining the fitness of a model, accuracy
is calculated for multiple parts. The smallest of these values is selected as the
fitness. This method was chosen over mean or mode to prevent the optimization
algorithm from ignoring outliers.

fitness = log(
1

|α−β|
|α|

) (1)

The evolution process is detailed in Algorithm 1. The initial population is
generated using the ramped half and half method, a classic GP initialization tech-
nique [11]. Each solution is evaluated and assigned a fitness at creatio n time.
Unlike Koza-style GP, the children are created through mutation or recombi-
nation. First, parents are chosen from the population. During recombination,
two parents are chosen and a random node from each tree is swapped. During
mutation, a random node is selected and regenerated from the single parent. A
strategy parameter, MutationRecombinationRatio, controls the ratio of chil-
dren generated by recombination and mutation. The children are merged with
the population. Then, using a selection method, the surviving solutions are cho-
sen and move on to the next generation. In order to support fair comparison
against baselines, the algorithm is terminated after a set amount of fitness eval-
uations. Within a few rounds of hand-tuning, the algorithm was able to reach a
sufficiently high fitness with a 95% accuracy compared to the ground truth. As
such, no more tuning was required. All strategy parameters are listed in Table 2.

4 Integrating Quality into the AJSSP

The AJSSP is well suited for integration of the quality transformation models.
Under the AJSSP, the series of assemblies naturally provides a scenario where

6 M. Prince et al.

Result: Quality Tranformation Model
while Evaluations < Max Evaluations do

Children = [];
for i← 0 to λ do

if U(0..1) < Mutation Recombination Ratio then
Parent1 = Parent Selection(Population);
Children.append(Sub-TreeMutation(Parent1));

else
Parent1 = Parent Selection(Population);
Parent2 = Parent Selection(Population);
Children.append(Sub-Tree Recombination(Parent1, Parent2));

end

end
Population = Population + Children;
Population = Survival Selection(Population);
Evaluations += λ;

end
Algorithm 1: The primary loop of the part modeling EA. It is assumed
that MaxEvaluations− µ is evenly divisible by λ for clean termination. Of
note, children are created by either recombination or mutation. In the case
of mutation the second selected parent is unused.

Table 2. GP Configuration

Strategy Parameter Value

Population Management µ+ λ

µ 200

λ 50

Parent Selection Fitness Proportionate Selection

Survival Selection k-Tournament Selection (k=20)

Max Depth 10

Mutation And Recombination Operators Koza-style

Mutation Recombination Ratio 0.2

Initialization Ramped Half-and-Half (md=5, d=10)

Termination Max Evaluations

Max Evaluations 10,000

MOEA Approach for Quality Aware AJSSP 7

compounding quality shifts can occur. The AJSSP framework also allows for the
tracking of final product assembly time and quantity.

Rather than counting the number of parts available at a given timestep or
using a validation method to check schedule correctness, we choose to perform
something more akin to a factory floor simulation. Each part produced has its
quality calculated on the fly with the transformation model. For this AJSSP, all
machines producing the same assembly share the same quality transformation
model. If a part has multiple quality attributes, multiple models are used to
produced the qualities of the assembly, one for each attribute. After a part is
produced, it is placed in a “bin” with other parts of the same type. When an
assembly job is run, the sub-parts required for the assembly are removed from
the bins, and their attributes are fed into the assembly’s quality transformation
model(s). This system of bins and part tracking allows for part quality to be mod-
eled and recorded throughout the problem, from the lowest level sub-assemblies
to the final product.

At the lowest level, base parts must exist to create the initial assemblies. At
the modeled facility, many of the lowest level parts are ordered ahead in bulk or
are stockpiled on site. To mirror this situation, at the beginning of the AJSSP,
a large amount of “supplied parts” are placed in their respective bins. For the
supplied parts, in order to maintain consistency, the number of supplied parts
and the attributes of said parts are the same for all experiments. These parts
were created with a Gaussian distribution of part qualities.

Some more common AJSSP constraints were added to more closely fit the
real-world scenario. First, we chose the traditional JSSP over the flexible JSSP:
a machine may only run a certain subset of assembly jobs. Second, not all as-
sembly operations take the same amount of time. Finally, it should be noted
that the AJSSP simulation contains no stochastic elements. The supplied parts
are identical and the machines and quality models are entirely deterministic.

4.1 Objective Calculations

The simulation environment produces three different fitnesses, one for each ob-
jective. For simplicity and visualization, each of the fitnesses are designed to be
positive and ranked in increasing order. The simulation terminates if the sched-
ule has produced a set amount of deliverable products above a specified quality
threshold, emulating a typical single order of products. If a final product fails
to meet the quality threshold, it is discarded. A max time is imposed to save
computational resources.

The first objective, the makespan, is calculated by taking the difference be-
tween the max allowed time, and time when the schedule has produced the
required quantity of parts. If the schedule fails to produce the required quan-
tity of parts in the max time, it is assigned a fitness of zero. The next fitness
monitors the first part lead time. In order to rank this fitness in increasing or-
der, this is calculated by taking the difference between the max time and the
first deliverable product that meets requirements. The last fitness measures part
quality. The quality metric of the passing final products are averaged together to

8 M. Prince et al.

form this fitness. Naturally, as a byproduct of these objectives, failed deliverable
products are minimized. Creating a failed part wastes machine time that could
have been used to create a part that meets requirements.

5 MOEA Solution Method

The stated problem and objectives can be broken down into two primary actions:
scheduling jobs on machines, and selecting subparts to use in part creation. Since
these problems are so closely related, we choose to bundle both solutions into a
single genotype with two distinct components. A visualization of this genotype,
as well as a single assembly operation is shown in Figure 2. The first is a schedule
which describes the order and machines jobs are run on. The second component,
called the part rankers, is a series of GP trees which are used to select the parts
used in the jobs. With the same functions and primitives as the quality models,
listed in Table 1, the GP tree uses the part attributes to generate a value. The
bins are sorted using the trees’ calculated values. When a part is built, the
subparts with the highest values are consumed.

Fig. 2. A visualization of the genotype and the operation of a single assembly step. In
practice, the ranking of the subparts is calculated and stored at the subparts’ assembly
time to prevent unnecessary re-ranking, but the displayed operation produces the same
logical outcome.

5.1 Initialization

For the part rankers, unlike the modeling process, initialization is performed
completely at random. At each node above the maximum depth, a random leaf

MOEA Approach for Quality Aware AJSSP 9

or branching node is chosen. At one less than the max depth of the tree, a random
leaf node is forced. Schedule initialization is a bit more complex due to the job
dependencies. In order to randomly initialize a valid schedule, at every decision
point, when a machine is not running an assembly, a random assembly is selected
from the set of valid assemblies. The valid set of assemblies is determined from
the state of the part bins.

5.2 Mutation and Recombination

The two different components of the genotype must be mutated in separate
ways. For the GP trees, a random set of trees are mutated, controlled by the
TreeMutationRate parameter. For each tree that undergoes mutation, a ran-
dom node is selected and regenerated using the initialization technique. The
schedule is mutated by selecting a random decision point and regenerating the
schedule through the initialization technique. The ScheduleMutationRate pa-
rameter determines the likelihood that the schedule will undergo mutation if the
genotype is selected for mutation.

Likewise, different techniques must be used to perform recombination for
the two different components. For the GP trees, in recombination, controlled
by TreeSwappingRecombinationRatio, either the whole tree can be swapped,
or a random node of one tree may be swapped with a node of another tree.
Similar to mutation, a random subset of trees is selected for recombination via
the TreeRecombinatoinRate.

Crossover of the schedule always occurs during recombination. For schedule
recombination, a random time is selected as the crossover point. The first sched-
ule is copied up to that point. From then on, the second schedule is used as a
guide to complete the new schedule. If the next decision of the guide schedule
is possible, then it is added. However, if it is not, due to subpart dependen-
cies, a random decision is selected from the set of available decisions, similar to
initialization.

5.3 Evolutionary Process

These genotypes are systematically evolved in order to search for new solutions.
First, an initial population of genotypes is initialized and ranked based on Pareto
optimality as in NSGA-II. The lowest set split during truncation is first sorted via
NSGA-II fitness clustering, and the least clustered members are selected for sur-
vival. The highest ranking members of the population are selected into a parent
set for mutation and recombination. From this set, λ child genotypes are created.
Similar to the modeling evolutionary process, MutationRecombinationRatio de-
termines the ratio of children created through recombination or mutation. These
children are added to the population and all members are re-ranked. Finally, the
population is culled via truncation. From there the next set of parents are se-
lected, and the process repeats.

All of the MOEA configuration parameters, including the parameters noted
above in the mutation and recombination section, are listed in Table 3. The

10 M. Prince et al.

Table 3. MOEA Configuration

Strategy Parameter Value

µ 500

λ 500

Population Management µ+ λ

Parent Selection Fitness Proportionate Selection

Survival Selection Truncation with NSGA-II Clustering

Mutation Recombination Ratio 0.24

Schedule Mutation Rate 0.88

Tree Mutation And Recombination Operators Koza-style

Max Tree Depth 6

Tree Mutation Rate 0.93

Tree Swapping Recombination Ratio 0.26

Tree Recombination Rate 0.82

Tree Initialization Random

Termination Max Evaluations

Max Evaluations 50,000

parameters were optimized with random search. A set of parameters is run five
times to capture consistency. The optimal config, observing both relative perfor-
mance and consistency, was hand-picked. We can observe that, in general, the
parameters favored high rates of change, picking above 0.8 for schedule, ranking
mutation, and recombination rates. The algorithm, in general preferred recom-
bination to mutation. When given the option to swap trees entirely between
genotypes, the algorithm landed on traditional node-based crossover most of the
time. Other than the high rate of change, the discovered parameters are fairly
typical.

6 Scheduling Baselines

In order to evaluate our algorithm’s performance, we constructed two baselines
using the same genotype configuration as our EA. Random search was per-
formed by repeatedly initializing the genotype structures. These solutions were
ranked by Pareto non-domination. For the second baseline we implemented a
form of hill climbing designed to operate in a multi-objective environment. The
hill climber is seeded with a single initialization of the genotype. At each step, a
new genotype is generated via the mutation operator, re-evaluated, and added
to the population using the mutation method described in the above section.
Afterwards, all genotypes are ranked via Pareto non-domination. Any members
not in the Pareto frontier are removed from the population. In order to save
on compute resources, the Pareto front is shuffled and truncated if it grows to
more than 500 members. The next member to be mutated is selected from the
remaining population.

MOEA Approach for Quality Aware AJSSP 11

7 Modeling Experiments and Results

Since both the modeling GP and baseline were run 30 times, they can be sta-
tistically compared with the student’s t-test. K-fold cross validation, specifically
30-fold cross validation with a 20% / 80% test-train split, was used to prevent
overfitting. First, by conducting a F-test, we determine that the variances are
unequal between the two algorithms. Next, a two-tailed t-test was run assuming
unequal variances. The t-test confers a confidence interval beyond 0.99 show-
ing a statically significant difference in performance. With GP’s higher mean of
95.06%, compared to the random search mean of 68.79%, in the test set, we can
conclude that GP outperformed the baseline. Full details of the calculation can
be found in Table 4. In the vast majority of instances, GP was able to find more
accurate models than the random search baseline.

Table 4. Statistical Analysis Results

Test or Parameter GP Random Search

Samples 30 30

Mean Fitness 95.06% 68.78%

σ 1.4% 0.04%

T-Test, Unequal Variances, 2-Tailed 1− p = 4.7× 10−8

8 Factory Simulation Experiments and Results

Due to the high computational cost, it was infeasible to compare the three
algorithms run to convergence. Instead, in order to perform a fair empirical
comparison, we opted to provide each of the algorithms the maximum feasible
computational time: 50,000 evaluations. Each algorithm was run 30 times with
different seeds to capture consistency and provide a more robust comparison.
All algorithms were run with the same factory and assembly configuration. This
configuration consists of a single deliverable part, D, which is constructed from
two subparts: A and B. These subparts are constructed from supplied parts. A
is constructed from supplied part SPA and B is constructed from supplied part
SPB. The factory has three machines: M1, M2, and M3. M1 can produce parts
D and A. M2 can produce A and B. M3 can produce D and B. For this proof of
concept, and due to the nature of parts created at our facility, the part models
used in our experiments were randomly generated.

8.1 Empirical Comparison

We first compare the performance of the three algorithms by observing Pareto-
dominance between fronts. Each run was compared against another through a

12 M. Prince et al.

series of binary comparisons. The comparisons are performed by combining the
Pareto-fronts of two runs and re-sorting the genotypes. Since each algorithm was
run 30 times, 900 sets of comparisons are performed for each permutation of the
comparison. If only one run’s solutions appear in the most dominant front, we
declare that run to have dominated the other. If both runs’ solutions appear
in the most dominant front, then we declare the two runs to have tied. When
the algorithms tie, we note the number of elements which contributed to the
final best Pareto front. If more elements of that front were contributed by a
single algorithm, the comparison is labeled a “greater tie”. If both algorithms
contributed equally to the final front, the result is labeled a “true tie”. For each
algorithm we performed several runs and compared each run individually. For
example, if each algorithm had 30 runs, we recorded 900 different comparisons.
The results of these comparisons can be seen in Table 5.

Table 5. Empirical Comparison of Algorithms

Alg A Alg B A Doms B Doms A Greater Ties B Greater Ties True Ties

MOEA Random 710 0 190 0 0

MOEA Hill 641 0 259 0 0

Hill Random 190 61 186 423 40

From the results gathered shown in Table 5 we can see that a significant
number of solutions tied, but MOEA performed demonstrably better than the
baselines. Looking at the complete front dominations, the MOEA solver out-
performed random search and hill climbing around roughly 75% of the time. In
the case of a tie, the MOEA always contributed more members to the combined
Pareto front. Comparing the two baselines, we see an interesting patten. While
the hill climber is able to dominate random search more often, random search
generally contributed more members to ties. We will explore this more when we
discuss aspects of the solution quality. The distribution of fitnesses, shown in
Figure 3 backs up the performance metrics. Observing the top row of plots, the
best-performing fitnesses in a run, the MOEA was able to consistently produce
solutions with better time savings and part qualities. All three algorithms were
able to find the best possible lead time, which was a single optimal permutation
of jobs to produce the first part.

8.2 Comparison of Solution Quality

With multiple objectives, more metrics and figures may be derived than front
domination. To gather more empirical data about solution qualities, the size of
the front and the range of solution fitnesses were chosen as metrics . The data
is aggregated in Table 6. The MOEA method was, on average, able to produce
solutions with five times the members of both random search and hill climbing.

MOEA Approach for Quality Aware AJSSP 13

Fig. 3. The distributions of the fitnesses. The top series of charts display the distribu-
tions of the best fitnesses for each of the 30 runs. The bottom charts display the fitness
distributions of all 30 runs’ members merged.

Table 6. Comparison of Solution Quality

Algorithm Front Size Makespan Part Quality First Part

MOEA 49.6 18.4 5.98 4.5

Random Search 11.0 17.93 22.47 10.0

Hill Climbing 9.06 14.36 12.33 1.0

*Makespan, Part Quality, and First Part are the mean ranges of their respective
fitnesses.

14 M. Prince et al.

In this context, more solutions would provide greater decision options to the end
users of this optimization. This may also explain the discrepancy between the
best and merged fitness distributions of solutions produced by the MOEA. The
MOEA was able to generate Pareto fronts of wider rangers, bringing down the
averages of the merged solutions. The MOEA had the greatest range in time, but
only by a small amount. Random search showed significantly more range in part
quality and first part lead time. Considering random search’s raw performance,
we suspect this is caused by the poorer quality of solutions produced by random
search. As solutions approach their maximums, observed in the best in run lead
times, the general range of non-dominated solutions tends to close.

9 Conclusion

Inspired by a real-world scenario, we have introduced a new method of modeling
quality through the use of intermediate inspection data. Using GP, real-world
assembly quality attributes may be reliably and accurately predicted. Confirmed
by statistical analysis, GP outperforms random search when generating these
models.

With these models, we presented a method of integrating quality tracking
into the AJSSP problem. With granular quality tracking, we can observe the
effect of compounding errors during the manufacturing process. Additionally,
this quality modeling enables novel objectives in the AJSSP. We can simulate
the effect of final product requirements affecting manufacturing time. We also
gain the objective of maximizing general product quality.

With the new AJSSP formulation, we developed a MOEA method to optimize
this environment using a combined genotype of GP to manage sub-assemblies
and a direct representation of a schedule to control job sequence. Through the use
of NSGA-II, all objectives of the environment can be simultaneously optimized
to produce a Pareto-front of non-dominant solutions. The MOEA method was
compared to both random search and hill climbing. This method was shown to
outperform both baselines in raw performance and usability metrics.

10 Future Work

This work may be extended in a variety of directions. The AJSSP may be ex-
tended to delivering multiple product orders simultaneously. Each time a new
product is added, the system must consider three additional fitnesses. Early ex-
periments with multiple products shows that NSGA-II is not able to optimize
well due to the abundance of non-dominant solutions. Variations and modifica-
tions on NSGA-II [7] have been shown to be effective at solving many-objective
problems, especially the non-dominant solution issue. Another alternative may
be to swap out the NSGA-II optimizer with the NSGA-III optimizer [5], specif-
ically designed to handle such issues.

MOEA Approach for Quality Aware AJSSP 15

While this work primarily operates in the empirical domain, further work
could be done to create a more rigorous mathematical analysis of the quality-
aware AJSSP problem and optimization method. Such a model may provide
critical insights into provably optimal solutions and novel solution methods.

This algorithm can be used to analyze how adding or removing machines or
suppliers affects the various objectives, as well as the tradeoff between objectives.
While the current work may help with short to medium term planning through
scheduling, observing how the optimization changes under factory modifications
may help inform medium to long term decisions such as purchasing equipment,
hiring operators, or expanding floor space. Taking this concept into the adver-
sarial space, this manipulation of factory structure may be linked to another
EA forming a competitive co-evolution problem. One agent is trying to maxi-
mize factory objectives while the other is attempting to minimize said objectives
by sabotaging select parts, machines, or other factory processes. Through this
proposed system, critical manufacturing components may be identified.

11 Acknowledgements

This work is funded by the Department of Energy’s Kansas City National Se-
curity Campus, operated by Honeywell Federal Manufacturing & Technologies,
LLC, under contract number DE-NA0002839.

References

1. Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M.: A multi objective optimiza-
tion approach for flexible job shop scheduling problem under random machine
breakdown by evolutionary algorithms. Computers & Operations Research 73,
56–66 (2016). https://doi.org/10.1016/j.cor.2016.03.009

2. Al-Hinai, N., ElMekkawy, T.Y.: Robust and stable flexible job shop schedul-
ing with random machine breakdowns using a hybrid genetic algorithm.
International Journal of Production Economics 132(2), 279–291 (2011).
https://doi.org/10.1016/j.ijpe.2011.04.020

3. Chan, F.T., Wong, T., Chan, L.: A genetic algorithm-based approach to job shop
scheduling problem with assembly stage. In: 2008 IEEE International Confer-
ence on Industrial Engineering and Engineering Management. pp. 331–335. IEEE
(2008). https://doi.org/10.1109/IEEM.2008.4737885

4. Dabhi, V.K., Chaudhary, S.: Empirical modeling using genetic programming:
A survey of issues and approaches. Natural Computing 14(2), 303–330 (2015).
https://doi.org/10.1007/s11047-014-9416-y

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints. IEEE transactions on evolutionary computation 18(4), 577–
601 (2013). https://doi.org/10.1109/TEVC.2013.2281535

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6(2),
182–197 (2002). https://doi.org/10.1109/4235.996017

16 M. Prince et al.

7. Elarbi, M., Bechikh, S., Gupta, A., Said, L.B., Ong, Y.S.: A New
Decomposition-based NSGA-II for Many-Objective Optimization. IEEE trans-
actions on systems, man, and cybernetics: systems 48(7), 1191–1210 (2017).
https://doi.org/10.1109/TSMC.2017.2654301

8. Frutos, M., Olivera, A.C., Tohmé, F.: A memetic algorithm based on a nsgaii
scheme for the flexible job-shop scheduling problem. Annals of Operations Research
181(1), 745–765 (2010). https://doi.org/10.1007/s10479-010-0751-9

9. Gao, K., Cao, Z., Zhang, L., Chen, Z., Han, Y., Pan, Q.: A review on swarm
intelligence and evolutionary algorithms for solving flexible job shop schedul-
ing problems. IEEE/CAA Journal of Automatica Sinica 6(4), 904–916 (2019).
https://doi.org/10.1109/JAS.2019.1911540

10. Gen, M., Lin, L.: Multiobjective evolutionary algorithm for manufacturing schedul-
ing problems: state-of-the-art survey. Journal of Intelligent Manufacturing 25(5),
849–866 (2014). https://doi.org/10.1007/s10845-013-0804-4

11. Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection, vol. 1. MIT press (1992)

12. Lu, H., Huang, G.Q., Yang, H.: Integrating order review/release and dis-
patching rules for assembly job shop scheduling using a simulation ap-
proach. International Journal of Production Research 49(3), 647–669 (2011).
https://doi.org/10.1080/00207540903524490

13. Lv, H., Han, G.: Research of assembly job shop scheduling problem based on
modified genetic programming. In: 2017 10th International Symposium on Com-
putational Intelligence and Design (ISCID). vol. 2, pp. 147–151. IEEE (2017).
https://doi.org/10.1109/ISCID.2017.120

14. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A Field Guide to Genetic
Programming. Lulu. com (2008)

15. Potts, C.N., Sevast’Janov, S., Strusevich, V.A., Van Wassenhove, L.N., Zwaneveld,
C.M.: The two-stage assembly scheduling problem: Complexity and approximation.
Operations Research 43(2), 346–355 (1995). https://doi.org/10.1287/opre.43.2.346

16. Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE
Data Eng. Bull. 23(4), 3–13 (2000)

17. Thiagarajan, S., Rajendran, C.: Scheduling in dynamic assembly job-shops
to minimize the sum of weighted earliness, weighted tardiness and weighted
flowtime of jobs. Computers & Industrial Engineering 49(4), 463–503 (2005).
https://doi.org/10.1016/j.cie.2005.06.005

18. Wang, Y.M., Yin, H.L., Da Qin, K.: A novel genetic algorithm for flexi-
ble job shop scheduling problems with machine disruptions. The International
Journal of Advanced Manufacturing Technology 68(5-8), 1317–1326 (2013).
https://doi.org/10.1007/s00170-013-4923-z

19. Wong, T.C., Chan, F.T., Chan, L.: A resource-constrained assembly job shop
scheduling problem with lot streaming technique. Computers & Industrial En-
gineering 57(3), 983–995 (2009). https://doi.org/10.1016/j.cie.2009.04.002

20. Wong, T.C., Ngan, S.C.: A comparison of hybrid genetic algorithm and hybrid par-
ticle swarm optimization to minimize makespan for assembly job shop. Applied Soft
Computing 13(3), 1391–1399 (2013). https://doi.org/10.1016/j.asoc.2012.04.007

21. Zhang, Q.s., Zhu, S.C.: Visual interpretability for deep learning: a survey. Frontiers
of Information Technology & Electronic Engineering 19(1), 27–39 (2018)

22. Zhang, S., Li, X., Zhang, B., Wang, S.: Multi-objective optimisation in
flexible assembly job shop scheduling using a distributed ant colony sys-
tem. European Journal of Operational Research 283(2), 441–460 (2020).
https://doi.org/10.1016/j.ejor.2019.11.016

